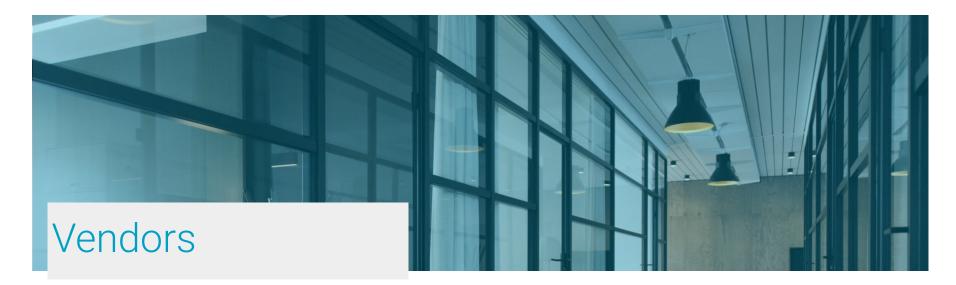

digitalscepter

Implementing Zero-Trust Security Architecture


ZACHRY SUM - DIRECTOR OF TECHNICAL SERVICES, DIGITAL SCEPTER JON ROBINSON - PRESIDENT, DIGITAL SCEPTER

November 19th, 2024



- Firewall migrations
- Firewall operations mass upgrades, backups, change/remove/add
- Firewall Healthchecks
- Panorama design
- Zero Trust Network Access
- Network Segmentation

- MFA
- SSL Decryption
- Inbound SSL Inspection
- Remote Access ("Always on")
- Securing Cloud infrastructure
- Dual ISP redundancy
- Network engineering
- Endpoint Security/EDR/MDR

- CMAS
- NASPO
- SPURR
- OMNIA Partners

- Palo Alto Networks
- Crowdstrike
- SentinelOne
- Okta
- Arista
- Juniper
- HPe/Aruba

- AWS
- Microsoft/Azure
- Proofpoint
- Zscaler
- Gigamon
- Rapid7
- Knowbe4
- Netskope

Agenda

- 1. Zero Trust Concept Overview
- 2. Negative Vs Positive Security Model
- 3. Zero Trust Prerequisites
- 4. Security Policy Building Blocks
- 5. Zero Trust Journey
- 6. Network Segmentation

Zero Trust Concept Overview

What is Zero Trust?

- A cybersecurity framework that's built upon the principle that no user should be implicitly trusted, i.e. default deny everywhere
- Users should be expected to meet strict criteria in order to be granted access to resources. A sample of items that should be verified:
 - Verify the identity of the user
 - Validate the user through the use of MFA
 - Ensure source device is trusted and healthy
 - Apply application level traffic controls, e.g. App-ID

How can this be achieved?

Negative Vs Positive Security Model

Negative Security Model

- The negative security model works on the principle that specific traffic will be denied, and any traffic not explicitly denied will be permitted
- This model is substantially more permissive than what is needed by an organization but can be used to get quick wins to stop threats and risky traffic

D 2 (evice Group digit	al_scepter_negative	~													
						Sourc	e .			Destination	1					
	NAME	LOCATION	TAGS	ТҮРЕ	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATI	SERVICE	ACTION	PROFILE	OPTIONS
1	deny all inbound	digital_scepter_negative	none	universal	🚧 untrust	any	any	any	🚧 trust	any	any	any	any	O Deny	Ø	.
2	permit all	digital_scepter_negative	none	universal	any	any	any	any	any	any	any	any	any	⊘ Allow		.

Positive Security Model

- The positive security model works exactly opposite the negative security model-specific traffic is permitted, and everything else is explicitly denied
- This model is much more restrictive even in its simplest form

c Q	Device Group dig	ital_scepter_positive	~													
						Sou	rce	492		Destination	2/4					
	NAME	LOCATION	TAGS	TYPE	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATI	SERVICE	ACTION	PROFILE	OPTIONS
1	permit dns	digital_scepter_positive	none	universal	🚧 trust	any	any	any	🚧 dns	dns_server_01	any	any	👷 dns_udp_53	⊘ Allow	3	.
2	permit internet	digital_scepter_positive	none	universal	P24 trust	any	any	any	🚧 untrust	any	any	any	₩ tcp_80	⊘ Allow		■■,
3	deny all	digital_scepter_positive	none	universal	any	any	any	any	any	any	any	any	any	O Deny	none	.

digitalscepter

Positive Security Model

- But what is getting through on tcp/80 and tcp/443?
- Service based policies aren't enough, App-ID should be used as much as possible

Application Name	Bytes	Sessions
web-browsing	27.05 G	471.95 k
outlook-web-online	6.13 G	53.99 k
trendmicro	111.58 M	48.59 k
google-analytics	2.18 G	37.33 k
flash	5.71 G	12.56 k
facebook-base	624.98 M	11.26 k
http-proxy	285.27 M	10.02 k
twitter-base	101.45 M	9.63 k
google-plus-base	342.04 M	7.99 k
ocsp	22.24 M	6.99 k
ms-office365-base	100.05 M	5.40 k
itunes-base	247.51 M	4.93 k
ms-update	1.43 G	3.54 k
google-docs-base	3.11 G	3.53 k
youtube-base	6.67 G	3.18 k
icloud-base	16.23 G	2.66 k
google-drive-web	567.95 M	2.63 k
ammyy-admin	2.96 M	2.53 k
new-relic	13.21 M	2.45 k
panos-web-interface	6.78 M	2.01 k
gmail-base	326.02 M	2.01 k
http-audio	1.21 G	1.89 k
dropbox	43.01 M	1.85 k
msrpc	2.66 M	1.72 k
instagram	162.32 M	1.64 k
ooyala	24.52 M	1.21 k
sharepoint-base	228.16 M	1.20 k
apple-push-notifications	13.42 M	1.12 k
google-update	1.90 G	982
disqus	6.71 M	956

Zero Trust Prerequisites

Are You Ready For Zero Trust?

- Before you can effectively implement zero trust, the below items should be evaluated:
 - **User-ID** a core component of zero trust is controlling access by user, not just IP address, so ensuring IP to user mappings are up to date and distributed across your firewalls is critical
 - **Network Segmentation** the more you isolate assets across unique subnets, the more you can control what is permitted between those assets
 - **Device Posturing** allowing a user to assets is only advised once a device has been determined to be healthy through posture checks

Security Policy Building Blocks

Security Policy Match Conditions

- **Zone** Source and Destination
- **IP Address** Source and Destination
- **User** Source and Destination
- **Device** Source and Destination
- Application
- Service
- URL Category

1			Source				Destination				
NAME	TAGS	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATI	SERVICE	URL CATEGORY

IP Addresses and Zones

- Always consider how you can avoid using "any"
- IP addresses should be as specific as possible
- Leverage Dynamic Address Groups or External Dynamic Lists rather than subnets when possible
 - Good: Source Destination NAME TAGS ZONE ADDRESS USER DEVICE ZONE ADDRESS DEVICE APPLICATI SERVICE URL CATEGORY ACTION allow servers to internet none any servers any any any 224 untrust any any any any Allow
- Source Destination Better: TAGS NAME ZONE ADDRESS USER DEVICE ZONE ADDRESS DEVICE APPLICATI ... SERVICE URL CATEGORY ACTION allow servers to internet. none application servers any anv servers any untrust any anv anv Allow database_servers web_servers Best: Source Destination Address Group 08 APPLICATI NAME TAGS ZONE ADDRESS USER DEVICE ZONE ADDRESS DEVICE SERVICE URL CATEGORY ACTION Name application_servers >0 allow servers to internet none Z servers application_servers 2 untrust any any any Allow Disable override database_servers Description R web_servers Type Dynamic Match 'application'

digitalscepter

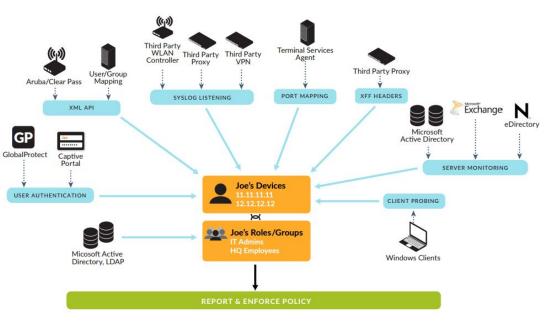
User

- Users should be required on all security policies that are sourced from devices where users log in
- Which policy would you rather use?

			S	ource			Destination					
NAME	TAGS	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATI	SERVICE	URL CATEGORY	ACTION
allow access to accounting - user	none	rust	any	Ads\accounting_users	any	servers	accounting_server	any	any	💥 application-default	any	⊘ Allow
allow access to accounting - ip	none	🚧 trust	accounting_users	any	any	servers	accounting_server	any	any	💥 application-default	any	⊘ Allow

• Ideally, we combine the two:

			S	ource			Destination					
NAME	TAGS	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATI	SERVICE	URL CATEGORY	ACTION
allow access to accounting	none	🚧 trust	accounting_users	A ds\accounting_users	any	2 servers	accounting_server	any	any	🗶 application-default	any	⊘ Allow



User

- Even policies sourced from servers can leverage User-ID, but this shouldn't apply to traffic that may be required without a logged in user, e.g. services, system updates
 - Practical example would be that servers can't access online-storage without User-ID
- Basic infrastructure rules should not leverage users in policy. Things like DNS and Active Directory traffic for example.
- With a heavy dependency on users for policy matching, User-ID architecture is important

User-ID Mappings

- Use as many sources as possible
 - AD Domain Controllers
 - GlobalProtect VPN
 - Wireless Controllers
 - Captive Portal
 - Syslog
 - XML API
 - Other 3rd party integrations
- Design your sources to be highly available
- Ensure that all firewalls have all mappings

digitalscepter

Devices

IOT devices can be profiled and policies automatically created with IOT Security Additionally vulnerable devices can have access restricted when detected 0

 Polycom 	_64167f031959	ÎoT	Restricted Device				± :
Risk Score 10 🔥			Restricted Traffic Start Time: Point of Restriction Notes	Chec		06 January 20, 2021 CVE-2018-18568 1 conference rooms	
T				Model	VVX601	IP Address Subnet DHCP	64:16:7f:03:19:59 10.193.2.53 10.193.2.0/23 Yes
				Site International Access Countries	test-1117 No		
Category	IP Phone						
Profile	Polycom IP Phone						
Confidence Level	High						
Confidence Score	98 🔿						
igital Scepter. All rights reserved	digitalscepter.com					digita	Iscepter

Devices

- Leverage HIP checks for all GlobalProtect enabled devices when internal and external
- Check for enabled antivirus

	Anti-Malware						
		🗸 ls Installed	Real Time Protection yes		HIP Profile	(2
	Virus Definition Version	Within			Name	SECURED_DEVICE	1
		Days V 7			Description	SECORED_DEVICE	4
•	Check for er	nabled firewall			Description	Shared	
	Firewall				Match	"fw check" and "av check" and "patch check"	
		ls Installed	ls Enabl	led yes			
•	Check for pa	atch managemen [.]	t				
	Patch Management —					Add Match Criteria	
	Criteria Vendor					OK Cancel)
	🗸 Is	Installed	Is Enabled yes				

• For inbound rules, a static application list is best

		-		Source			Destination							
NAME	TAGS	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATI	SERVICE	URL CATEGORY	ACTION	PROFILE	OPTIONS
allow untrust to ext ftp server	none	🚧 untrust	any	any	any	🚧 dmz	extftp01_public	any	🔝 ftp	💥 application-default	any	⊘ Allow	1	.

• For targeted outbound rules, static applications is also ideal

				Source			Destination							
NAME	TAGS	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATI	SERVICE	URL CATEGORY	ACTION	PROFILE	OPTIONS
allow developers to github	none	🚧 trust	any	ds\developers	any	🚧 untrust	any	any	🐻 git-base	1. The second	github	⊘ Allow	3	I ,
						1.		C' 1.	📰 github	🎇 tcp_443				

• For general internet access policies, application filters is the ideal method

		-	Sou	rce			Destination							
NAME	TAGS	ZONE	ADDRESS	USER	DEVICE	ZONE	ADDRESS	DEVICE	APPLICATION	SERVICE	URL CATEGORY	ACTION	PROFILE	OPTIONS
permit internet	none	rust	any	any	any	Manual Market	any	any	af_business tools af_collaboration af_general internet	🎇 tcp_80	any	⊘ Allow	6	

digitalscepter

Service

- Services should be leveraged differently depending on the context of the policy
- As a rule of thumb, the following guideline applies to using services on policies:
 - Deny rules should use service "any"
 - \circ $\,$ Allow rules should use specific services
 - Allow rules for application with dynamic port usage should use "application-default"
- Every application PAN publishes has known standard ports that are applied on a rule when using "application-default" on a policy

Application		C
Name:	ftp	Description:
Standard Ports:	tcp/21	FTP or File Transfer Protocol is used to transfer data from one computer to another over the Internet, or through a network.
Secure Ports:	tcp/990	to another over the internet, or anotogica network.
Depends on:		
Implicitly Uses:		
Deny Action:	drop-reset	

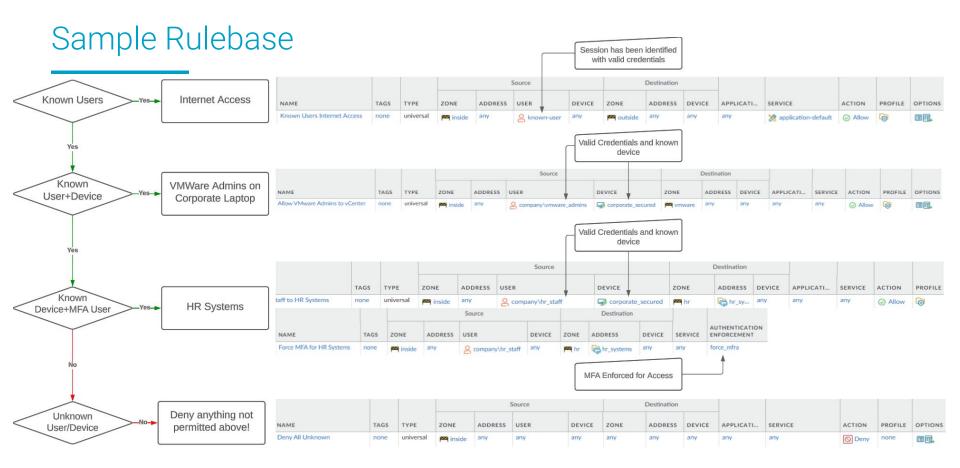
digitalscep

URL Category

- URL Categories can be used as a "destination" match condition
- These can be used for targeted internet access policies:
 - A department needs access to a specific website that is denied for everyone else. An allow rule can be created with a custom URL category to match on the specific website that needs to be permitted
- Only http/https traffic will match policies with URL categories

	Name	github.com	
	Description		
		Shared	
		Disable override	
	Туре	URL List	~
Match	es any of the follo	wing URLs, domains or host names	
Q ($2 \text{ items} \rightarrow \times$
	SITES		
	github.com/		
	*.github.com/		

Enter one entry per row.


Each entry may be of the form www.example.com or it could have wildcards like www.*.com.

To ensure an exact entry match, use a forward slash (/) at the end of your entry. Example: xyz.com/ matches only xyz.com. For more info, see URL Category Exceptions

Zero Trust Journey

digitalscepter

Improving Existing Security Posture

The idea of getting to a zero trust model can be overwhelming. Try to break it into manageable chunks of work. For example:

- Add MFA to GlobalProtect
- Enable inbound inspection and convert inbound rules to use App-id
- Add User-ID to policies that enable access to critical systems
- Create internet access rules based on application filters
- Analyze the rulebase and try to find 3 things that you can change to improve security

digitalscepter

Zero Trust Prioritization

When considering how to move towards a zero-trust rulebase, you must consider the difficulty of the work along with the amount of improvement to your security posture. Based on these criteria, we have general recommendations:

- 1. MFA for remote access
 - Email or SMS alerts for successful logins from outside of the US (status eq 'success') and (srcregion neq 'US') and ((eventid eq 'portal-auth') or (eventid eq 'gateway-auth'))
- 2. SSL Decryption
- 3. Security Profiles on all allow rules
- 4. App-ID
- 5. User-ID
- 6. Device-ID

Network Segmentation

- Network segmentation is the process of classifying assets into unique subnets on your network with the intent of firewalling between these subnets.
- Firewalling these subnets is generally achieved by making the firewall the default gateway for the subnets assets are on, but another common option is using VRFs to force inter-VRF traffic through a firewall.

Benefits

- Content inspection between subnets
- Prevent lateral spread of threats
- App-ID and User-ID between subnets
- Visibility into traffic flows between subnets
- Ability to easily isolate assets that may be compromised
- Foundation of a Zero Trust Architecture

Methods of Implementation

Depending on your network topology, we would suggest taking one of the following design options:

- 1. Firewall on a stick model, with SVIs migrated to firewalls
- 2. VRF-Lite using different transit VLANs
- 3. L2 VNIs over VXLAN*
- 4. L3VPN Technologies (L3VPN / EVPN)*
- * Requires >1500 MTU or TCP MSS Clamping

The default Internet MTU is 1500 bytes.

- Clients will use this MTU to negotiate their TCP Maximum Segment Size.
 - 1460 bytes is typical: MTU(1500) IP Header(20) TCP Header(20)

If you use an overlay technique, there's additional per packet overhead. To accommodate this, either jumbo frames or TCP Clamping may be used. If MTU isn't increased - or client's aren't aware - fragmentation will occur (Bad).

Most switches support Jumbo frames up to 9000 bytes, some further (9200+). Most ISPs also support Jumbo frames on their Ethernet service connections.

MTU/TCP-MSS Examples

- Switch MTU defines the maximum frame size a switch will cary before it is dropped. (Default is 1500 bytes).
- This can typically be increased without impact, although the switch may require a reload.
- Care should also be taken if the switch functions as a router.

interface Ethernet1/3 no switchport mtu 9216

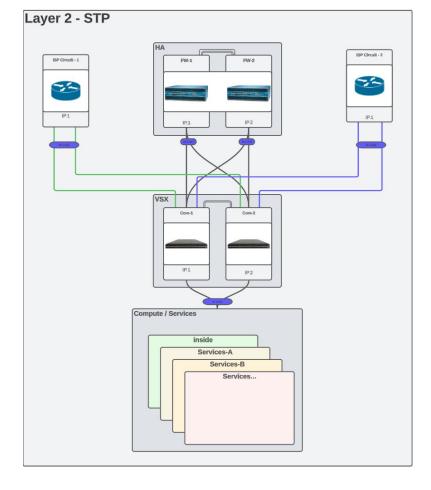
-SWl(config)#system mtu jumbo 9198

- TCP MSS Clamping is typically automatic on tunnel interfaces. Though it may need to be manually defined.
- This configures the router to alter the TCP Maximum Segment Size negotiated during the TCP 3-way handshake between a client and host.

-SW(config-if)#ip tcp adjust-mss 1380

Choosing a Solution

Supported Condition	FW on a Stick	VRF Lite	L2 VNIs	L3VPN
Layer 2 between sites	Yes	Yes	Yes	Yes
Layer 3 between sites	No	Yes	Yes	Yes
Standard MTU	Yes	Yes	No	No
Jumbo frames	Yes	Yes	Yes	Yes
Low latency Intrasite	No	Yes	No	Yes
Scalability	Yes	No	No	Yes

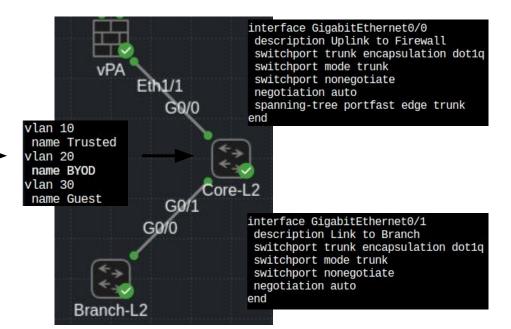

digitalscepter

Methods of Implementation

Firewall on a stick

+Simple design +Quick migration -Dependency on L2 links to remote sites for firewalling remote site networks -VLANs can't overlap* -MAC Limitations on Leased Circuits

*-802.1ad Q-in-Q may be a work-around.



Firewall on a stick

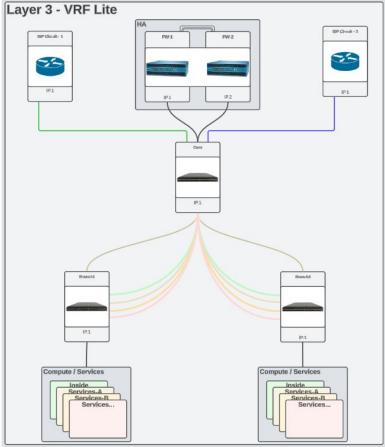
Firewall on a Stick/VLAN Extension:

You only need Layer 2 VLANs and Trunks configured.

VRF-Lite

+VLANs can overlap

+Smaller broadcast domains


+Widely supported

+VRF-Lite + Tunnel can act as a basic overlay.

+/- VRF-Lite using 802.1q has no overlay overhead. Tunnel based overlay has high overhead.

-Possible Dependency on 802.1q L2 links to remote site

-Not-scalable - Dedicated routing protocol per VRF/Zone.

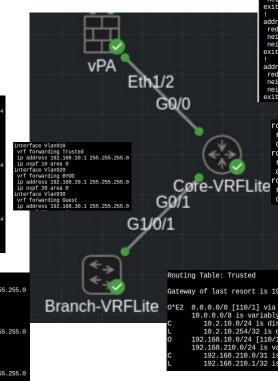
VRF-Lite

INTERF	COMMENT	IP ADDRESS	SECURI ZONE
vlan		none	none
vlan.10	Trust - L3 Peer	172.20.10.254/24	Trusted
vlan.20	BYOD - L3 Peer	172.20.20.254/24	BYOD
vlan.30	Guest - L3 Peer	172.20.30.254/24	Guest

VRF Lite:

- Each VRF needs its own router process and path.
- Each router in the path needs to have VRF configuration.

interface Tunnel10 vrf forwarding Trusted 1p address 192.168.210.1 255.255.255.254 1p ospin metwork point-to-point tunnel source Loopback0 tunnel destination 10.255.2.1 tunnel destination 10.255.2.1


Interface Tunnel20 vrf fonarding BYOD ip address 192.168.220.1 255.255.255.254 jo ospf network point-to-point ip ospf 20 area 0 tunnel source Loopback0 tunnel destination 10.255.2.1 tunnel kay 20

interface Tunnel30 vrf forwarding Guest ip address 192.168.230.1 255.255.255.254 ip ospf network point-to-point ip ospf 30 area 0 tunnel source Loopback0 tunnel destination 10.255.2.1 tunnel kev 30

> nterface Vlan10 vrf forwarding Trusted ip address 10.2.10.254 255.255.255.0 ip ospf 10 area 0 no autostate

interface Vlan20 vrf forwarding BYOD ip address 10.2.20.254 255.255.255.0 ip ospf 20 area 0 no autostate

interface Vlan30 vrf forwarding Guest ip address 10.2.30.254 255.255.255.0 ip ospf 30 area 0 no autostate

outer bgp 65002

bgp router-id interface Loopback0 no bgp transport path-mtu-discovery bgp log-neighbor-changes no bgp default ipv4-unicast

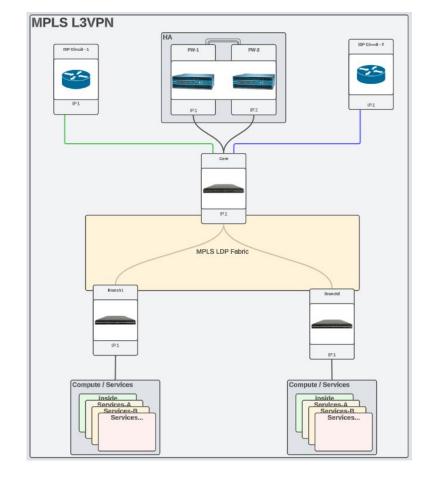
address-family ipv4 vrf BYOD redistribute ospf 20 neighbor 172.20.20.254 remote-as 65535 neighbor 172.20.254 activate exit-address-family

address-family ipv4 vrf Guest redistribute ospf 30 neighbor 172.20.30.254 remote-as 65535 neighbor 172.20.30.254 activate exit-address-family

address-family ipv4 vrf Trusted redistribute ospf 10 neighbor 172.20.10.254 remote-as 65535 neighbor 172.20.10.254 activate exit-address-family

router ospf 10 vrf Trusted

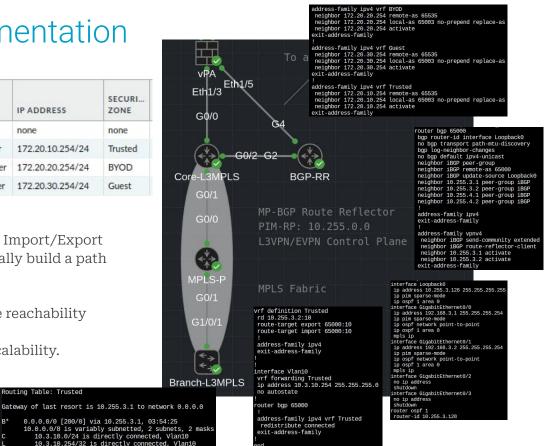
core-VRFLite redistribute bgp 65002 subnets default-information originate router ospf 20 vrf BYOD redistribute bgp 65002 subnets default-information originate router ospf 30 vrf Guest redistribute bgp 65002 subnets default-information originate


Gateway of last resort is 192.168.210.0 to network 0.0.0.0

0*E2 0.0.0.0/0 [110/1] via 192.168.210.0, 1d11h, Tunnel10 10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks C 10.2.10.0/24 is directly connected, Vlan10 L 10.2.10.0/24 is directly connected, Vlan10 0 192.168.10.0/24 [110/1001] via 192.168.210.0, 1d11h, Tunnel10 192.168.210.0/24 [110/1001] via 192.168.210.0, 1d11h, Tunnel10 192.168.210.0/21 is variably subnetted, 2 subnets, 2 masks C 192.168.210.1/32 is directly connected, Tunnel10

MPLS L3VPN

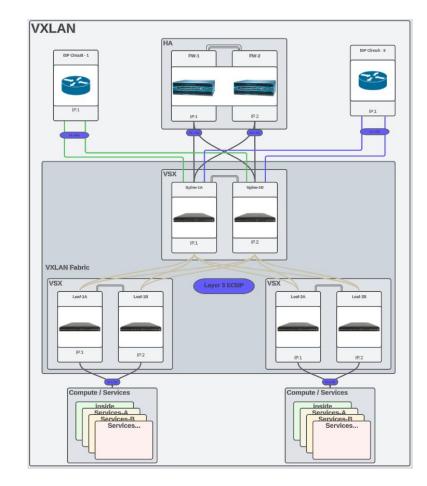
- +VLANs can overlap
- +Smaller broadcast domains
- +Highly Scalable (ISPs use it Globally)
- +Low Overlay Overhead (8 bytes)
- -All devices in labeled path need to support MPLS.
- -Not a common skillset.
- -TCP Clamping Not Easily Implemented (Use Jumbo MTU)


MPLS L3VPN

INTERF	COMMENT	IP ADDRESS	SECURI. ZONE
vlan		none	none
vlan.10	Trust - L3 Peer	172.20.10.254/24	Trusted
vlan.20	BYOD - L3 Peer	172.20.20.254/24	BYOD
vlan.30	Guest - L3 Peer	172.20.30.254/24	Guest

MPLS L3VPN:

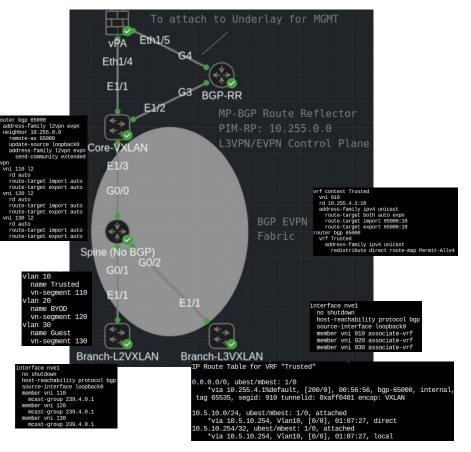
iBGP Extended Communities are used to Import/Export Routes per VRF. MPLS LDP will dynamically build a path to carry the data.


- OSPF is used in the underlay to provide reachability between loopbacks
- BGP-Route Reflector is used for easy scalability.

digitalscepter

BGP EVPN

- +VLANs can overlap
- +Smaller broadcast domains
- +Highly Scalable (DC/Colos use it Globally)
- +Data carried by UDP datagram No special transport requirements.
- +Can function as both L2 and L3 extension.
- -High Overlay Overhead (## bytes)
- -Not a common skillset.
- -TCP Clamping Not Easily Implemented (Use Jumbo MTU)


BGP EVPN

INTERF	COMMENT	IP ADDRESS	SECURI ZONE
vlan		none	none
vlan.10	Trust - L3 Peer	172.20.10.254/24	Trusted
vlan.20	BYOD - L3 Peer	172.20.20.254/24	BYOD
vlan.30	Guest - L3 Peer	172.20.30.254/24	Guest

BGP EVPN:

iBGP Extended Communities are used to Import/Export Routes per VRF/VNI. VXLAN NVEs will dynamically forward traffic to peer switches.

- OSPF is used in the underlay to provide reachability between loopbacks.
- PIM is used to create multicast underlay for flood BUM traffic. (Broadcast, Unknown-unicast, and Multicast)
- *Non-Multicast options are also available (Ingress-Replication)
- BGP-Route Reflector is used for easy scalability.

digitalscepter

Note on MTU (Examples)

- 802.1q	 ▶ Frame 8: 118 bytes on wire (944 bits), 118 bytes captured (944 bits) ▶ Ethernet II, Src: RealtekU_00:12:27 (52:54:00:00:12:27), Dst: RealtekU_0f:d8:65 (52:54:00:0f:d8:65) ▶ 802.10 Virtual LAN, PRI: 0, DEI: 0, ID: 910 ▶ Internet Protocol Version 4, Src: 10.2.10.254, Dst: 8.8.8.8 ▶ Internet Control Message Protocol
- MPLS	 ▶ Frame 7: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) ▶ Ethernet II, Src: RealtekU_91:5c:0b (52:54:00:01:5c:0b), Dst: RealtekU_15:6d:ef (52:54:00:15:6d:ef) ▶ MultiProtocol Label Switching Header, Label: 17, Exp: 0, S: 0, TTL: 255 ▶ MultiProtocol Label Switching Header, Label: 56, Exp: 0, S: 1, TTL: 255 ▶ Internet Protocol Version 4, Src: 10.3.10.254, Dst: 8.8.8.8 ▶ Internet Control Message Protocol
- GRE	 Frame 10: 142 bytes on wire (1136 bits), 142 bytes captured (1136 bits) Ethernet II, Src: RealtekU_00:12:0d (52:54:00:00:12:0d), Dst: RealtekU_0f:d8:65 (52:54:00:0f:d8:65) Internet Protocol Version 4, Src: 10.255.2.2, Dst: 10.255.2.1 Generic Routing Encapsulation (IP) Internet Protocol Version 4, Src: 10.2.10.254, Dst: 8.8.8.8 Internet Control Message Protocol
- VXLAN	 Frame 6: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits) Ethernet II, Src: Realteku_18:f4:60 (52:54:00:18:f4:60), Dst: 52:10:d7:d6:1b:08 (52:10:d7:d6:1b:08) Internet Protocol Version 4, Src: 10.255.4.3, Dst: 10.255.4.1 User Datagram Protocol, Src Port: 52215, Dst Port: 4789 Virtual eXtensible Local Area Network Ethernet II, Src: 52:1d:4b:d9:1b:08 (52:1d:4b:d9:1b:08), Dst: 52:10:d7:d6:1b:08 (52:10:d7:d6:1b:08) Internet Protocol Version 4, Src: 10.5.10.254, Dst: 8.8.8.8 Internet Control Message Protocol
- IPSEC	 ▶ Frame 6: 194 bytes on wire (1552 bits), 194 bytes captured (1552 bits) ▶ Ethernet II, Src: RealtekU_08:a5:9a (52:54:00:08:a5:9a), Dst: RealtekU_1e:8a:ad (52:54:00:1e:8a:ad) ▶ Internet Protocol Version 4, Src: 10.255.2.3, Dst: 10.255.2.1 ▶ Encapsulating Security Payload

Different frame sizes using different overlay techniques.

Base ICMP ping frame size is 114 bytes.

802.1q and MPLS are the smallest as they sit in front of the original IP header.

The other techniques encapsulate the original IP packet inside of a new IP packet.

- Option 1 Migrate server vlan interfaces from core switch and place them on firewall
 - Quicker to implement
 - May need to migrate ACLs from switch
 - May need to further segment existing subnets
- Option 2 Create new server subnets on firewall and migrate applications to new subnets
 - Migrating applications to new subnets is a large effort that carries risk (services using IP address versus hostname will break)
 - \circ ~ Will require rule base updates for IP changes, but will lead to cleaner rule base
 - Applications can be moved one at a time allowing slow, methodical approach

digitalscepter

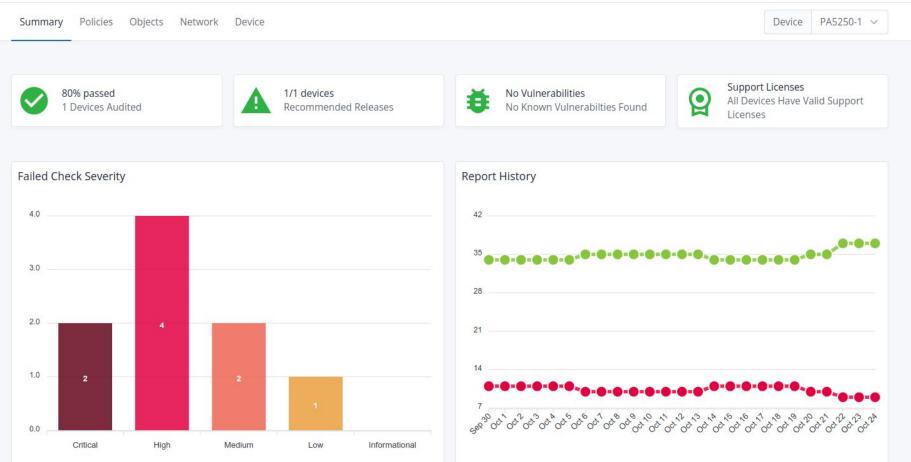
Recommendations

- If there are just a few server subnets
 - Option 1, followed by option 2
 - This will allow instant improvement of security posture by getting subnets on the firewall
 - Option 2 can then be implemented over time to continue improving posture
- If there are significant server subnets
 - Option 1
 - If assets are already properly categorized into subnets, migrating the subnets straight to the firewall should be all that is needed
 - Make sure ACLs are properly migrated prior to migrating

- Security and NAT policies will need to be updated to reflect changes to zones
- Load balancers can lead to asymmetric routes and will need to be considered before migrating subnets

What is Falco?

- A tool to detect configuration issues
- A managed service to assist with fixing them



Sample Falco Report

Falco Plus

digitalscepter

sales@digitalscepter.com (888) 299-3718

digitalscepter.com